

GT-321R-RS232

Fast Acquisition Enhanced Sensitivity 65 Channels GPS Sensor Receiver

The GT-321R-RS232 is a compact all-in-one GPS module solution intended for a broad range of Original Equipment Manufacturer (OEM) products, where fast and easy system integration and minimal development risk is required.

The receiver continuously tracks all satellites in view and provides accurate satellite positioning data. The GT-321R-RS232 is optimized for

applications requiring high-performance, low cost, and maximum flexibility; suitable for a wide range of OEM configurations including handhelds, sensors, asset tracking, PDA-centric personal navigation system, and vehicle navigation products.

Its 65 parallel channels and Venus 6 search bins provide fast satellite signal acquisition and short startup time. Acquisition sensitivity of –155dBm and tracking sensitivity of –160dBm offers good navigation performance even in urban canyons having limited sky view..

Satellite-based augmentation systems, such as WAAS and EGNOS, are supported to yield improved accuracy. Besides it also supports A-GPS function and fixed in the short time.

RS232-level serial interface are provided on the interface connector. Supply voltage of 3.8V~8.0V is supported.

FEATURES

Acquire and track 65 satellites simultaneously

Venus 6 correlators

Signal detection better than -160dBm

Reacquisition sensitivity -155dBm

Cold start < 30 seconds at -147dBm

Hot start < 1sec under open sky

5m CEP accuracy

SBAS (WAAS, EGNOS) support

Support A-GPS function

< 26mA tracking

PS/2 Cable

Suitable with the adapter cable plug in PDA

TECHNICAL SPECIFICATIONS

Receiver Type 65 parallel channels, L1 C/A code

Accuracy Position 5m CEP

Velocity 0.1m/sec

Startup Time < 1sec hot start (average) < 30sec cold start

Signal Reacquisition 1s

Sensitivity -155dBm acquisition

-160dBm tracking

Update Rate 1Hz standard

(5Hz special order)

Dynamics 4G (39.2m/sec₂)

Operational Limits Altitude < 18,000m or velocity < 515m/s

(COCOM limit, either may be exceeded but not both)

Serial Interface LVTTL level

Protocol NMEA-0183 V3.01

GPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG, GPZDA

4800/9600/19200/38400 baud, 8, N, 1

Datum Default WGS-84

User definable

Interface Connector One 1.0mm pitch WTB S/R wafer 87213 SMT R/A type connector

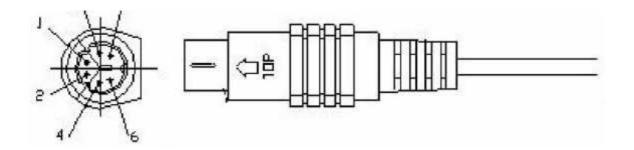
Input Voltage 3.8V ~ 8.0V

Power Consumption < 26mA (1Hz standard version; tracking)

Dimension 34 mm L x 34 mm W x 8.6 mm H

Weight: 14g

Operating Temperature -40°C ~ +85°C


Humidity $5\% \sim 95\%$ Operating Temperature -40°C $\sim +85$ °C Humidity $5\% \sim 95\%$

STANDARD PACKAGE

GT-321R-RS232 Mini-DIN GPS Receiver

Standard OEM Package

PIN ASSIGNMENT

PS2	Description
Pin1	GND
Pin2	VCC
Pin3	NC
Pin4	RX
Pin5	TX
Pin6	NC

NMEA Messages

The serial interface protocol is based on the National Marine Electronics Association's NMEA 0183 ASCII interface specification. This standard is fully define in "NMEA 0183, Version 3.01" The standard may be obtained from NMEA, www.nmea.org

GGA - GPS FIX DATA

Time, position and position-fix related data (number of satellites in use, HDOP, etc.).

Format

\$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>,*<13><CR><LF>

Example:

\$GPGGA,104549.04,2447.2038,N,12100.4990,E,1,06,01.7,00078.8,M,0016.3,M,,*5C<CR><LF>

Field	Example	Description
1	104549.04	UTC time in hhmmss.ss format, 000000.00 ~ 235959.99
2	2447.2038	Latitude in ddmm.mmmm format Leading zeros transmitted
3	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
4	12100.4990	Longitude in dddmm.mmmm format Leading zeros transmitted
5	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
6	1	Position fix quality indicator 0: position fix unavailable 1: valid position fix, SPS mode 2: valid position fix, differential GPS mode
7	06	Number of satellites in use, 00 ~ 12
8	01.7	Horizontal dilution of precision, 00.0 ~ 99.9
9	00078.8	Antenna height above/below mean sea level, -9999.9 ~ 17999.9
10	0016.3	Geoidal height, -999.9 ~ 9999.9
11		Age of DGPS data since last valid RTCM transmission in xxx format (seconds) NULL when DGPS not used
12		Differential reference station ID, 0000 ~ 1023 NULL when DGPS not used
13	5C	Checksum

Note: The checksum field starts with a '*' and consists of 2 characters representing a hex number. The checksum is the exclusive OR of all characters between '\$' and '*'.

GLL - LATITUDE AND LONGITUDE, WITH TIME OF POSITION FIX AND STATUS

Latitude and longitude of current position, time, and status.

Format:

\$GPGLL,<1>,<2>,<3>,<4>,<5>,<6>,<7>*<8><CR><LF>

Example:

\$GPGLL,2447.2073,N,12100.5022,E,104548.04,A,A*65<CR><LF>

Field	Example	Description
1	2447.2073	Latitude in ddmm.mmmm format
		Leading zeros transmitted
2	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
3	12100.5022	Longitude in dddmm.mmmm format
		Leading zeros transmitted
4	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
5	104548.04	UTC time in hhmmss.ss format, 000000.00 ~ 235959.99
6	Α	Status, 'A' = valid position, 'V' = navigation receiver warning
7	Α	Mode indicator
		'N' = Data invalid
		'A' = Autonomous
		'D' = Differential
		'E' = Estimated
8	65	Checksum

GSA - GPS DOP AND ACTIVE SATELLITES

GPS receiver operating mode, satellites used for navigation, and DOP values.

Format:

\$GPGSA,<1>,<2>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<4>,<5>,<6>*<7>>CR ><LF>

Example:

\$GPGSA,A,3,26,21,,,09,17,,,,,10.8,02.1,10.6*07<CR><LF>

Field	Example	Description
1	Α	Mode, 'M' = Manual, 'A' = Automatic
2	3	Fix type, 1 = not available, 2 = 2D fix, 3 = 3D fix
3	26,21,,,09,17,,,,,	PRN number, 01 to 32, of satellite used in solution, up to 12 transmitted
4	10.8	Position dilution of precision, 00.0 to 99.9
5	02.1	Horizontal dilution of precision, 00.0 to 99.9
6	10.6	Vertical dilution of precision, 00.0 to 99.9
7	07	Checksum

GSV - GPS SATELLITE IN VIEW

Number of satellites in view, PRN number, elevation angle, azimuth angle, and C/No. Only up to four satellite details are transmitted per message. Additional satellite in view information is sent in subsequent GSV messages.

Format:

\$GPGSV,<1>,<2>,<3>,<4>,<5>,<6>,<7>,...,<4>,<5>,<6>,<7> *<8><CR><LF>

Example:

\$GPGSV,2,1,08,26,50,016,40,09,50,173,39,21,43,316,38,17,41,144,42*7C<CR><LF>\$GPGSV,2,2,08,29,38,029,37,10,27,082,32,18,22,309,24,24,09,145,*7B<CR><LF>

Field	Example	Description
1	2	Total number of GSV messages to be transmitted
2	1	Number of current GSV message
3	08	Total number of satellites in view, 00 ~ 12
4	26	Satellite PRN number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 = PRN120)
5	50	Satellite elevation number, 00 ~ 90 degrees
6	016	Satellite azimuth angle, 000 ~ 359 degrees
7	40	C/No, 00 ~ 99 dB
		Null when not tracking
8	7C	Checksum

RMC - RECOMMANDED MINIMUM SPECIFIC GPS/TRANSIT DATA

Time, date, position, course and speed data.

Format:

\$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*<13><CR><LF>

Example:

\$GPRMC,104549.04,A,2447.2038,N,12100.4990,E,016.0,221.0,250304,003.3,W,A*22<CR><LF>

Field	Example	Description
1	104549.04	UTC time in hhmmss.ss format, 000000.00 ~ 235959.99
2	Α	Status, 'V' = navigation receiver warning, 'A' = valid position
3	2447.2038	Latitude in dddmm.mmmm format Leading zeros transmitted
4	N	Latitude hemisphere indicator, 'N' = North, 'S' = South
5	12100.4990	Longitude in dddmm.mmmm format Leading zeros transmitted
6	E	Longitude hemisphere indicator, 'E' = East, 'W' = West
7	016.0	Speed over ground, 000.0 ~ 999.9 knots
8	221.0	Course over ground, 000.0 ~ 359.9 degrees
9	250304	UTC date of position fix, ddmmyy format
10	003.3	Magnetic variation, 000.0 ~ 180.0 degrees
11	W	Magnetic variation direction, 'E' = East, 'W' = West
12	А	Mode indicator 'N' = Data invalid 'A' = Autonomous 'D' = Differential 'E' = Estimated
13	22	Checksum

VTG - COURSE OVER GROUND AND GROUND SPEED

Velocity is given as course over ground (COG) and speed over ground (SOG).

Format:

GPVTG,<1>,T,<2>,M,<3>,N,<4>,K,<5>*<6><CR><LF>

Example:

\$GPVTG,221.0,T,224.3,M,016.0,N,0029.6,K,A*1F<CR><LF>

Field	Example	Description
1	221.0	True course over ground, 000.0 ~ 359.9 degrees
2	224.3	Magnetic course over ground, 000.0 ~ 359.9 degrees
3	016.0	Speed over ground, 000.0 ~ 999.9 knots
4	0029.6	Speed over ground, 0000.0 ~ 1800.0 kilometers per hour
5	A	Mode indicator 'N' = Data invalid 'A' = Autonomous 'D' = Differential 'E' = Estimated
6	1F	Checksum

ZDA TIME AND DATE

Format:

\$GPZDA,<1>,<2>,<3>,<4>,<5>,<6>*<7><CR><LF>

Example:

\$GPZDA,104548.04,25,03,2004,,*6C<CR><LF>

Field	Example	Description
1	104548.04	UTC time in hhmmss.ss format, 000000.00 ~ 235959.99
2	25	UTC time: day (01 31)
3	03	UTC time: month (01 12)
4	2004	UTC time: year (4 digit year)
5		Local zone hour Not being output by the receiver (NULL)
6		Local zone minutes Not being output by the receiver (NULL)
7	6C	Checksum

Binary Messages

See Binary Message Protocol User's Guide for detailed descriptions.

CanMore Electronics Co., LTD.

4F.,No. 30, Sec.1,Jiafong 5th Rd.,Jhubei City Hsinchu County, 302, Taiwan

Phone +886 3 6586046 Fax +886 3 6583940

Email sales@canmore.com.tw

Website:http://www.canmore.com.tw

http://canmorecorp.trustpass.alibaba.com/

© 2000 CanMore Electronics Co., Ltd. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of CanMore Electronics Co., Ltd. ("CMEC") Information provided by CMEC is believed to be accurate and reliable. These materials are provided by CMEC as a service to its customers and may be used for informational purposes only. CMEC assumes no responsibility for errors or omissions in these materials, nor for its use. CMEC reserves the right to change specification at any time without notice.

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of CMEC products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. CMEC further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. CMEC shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

CMEC products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.